Development of a robust and computationally-efficient active sound profiling algorithm in a passenger car

نویسنده

  • Jari Kataja
چکیده

Active noise control is a technique to cancel unwanted sound using adjustable secondary sound. In active sound profiling, the target is to obtain a certain sound field or profile and the power over specific frequencies can be altered in a desired way, even by amplifying it. Active sound profiling can be used for increasing the sound quality in a passenger car, for example, by modifying the engine noise inside the car cabin. A fundamental algorithm in active sound profiling is the command-FXLMS (CFXLMS) algorithm, which is an extension of the famous FXLMS algorithm widely used in active noise control. The computational demand of the C-FXLMS algorithm becomes excessive in multiple-channel systems with engine noise components to be controlled using several loudspeakers and microphones. The most time-consuming part of the C-FXLMS algorithm is the filtering of the reference signals. In order to reduce the computational burden, a new way to modify the reference signals in narrowband systems has been developed in this work. Instead of conventional filtering operations, the new method is based on delaying the sinusoidal reference signals and modifying their amplitude. The algorithm should work reliably and maintain stability in all operating points. In this work, an adaptive leakage has been developed for the C-FXLMS algorithm to increase its robustness. The objective is to limit the adaptive filter coefficients at frequencies where the phase shift of the plant is large. Such phase shifts occur at resonances, for example, and the performance of the algorithm is drastically degraded. In this work, the C-FXLMS algorithm has also been combined with the EEFXLMS algorithm so that frequency-independent step sizes can be used. This increases robustness and enables faster tuning of the algorithm. The developed algorithm has been tested in a simulation model and in an experimental active sound profiling system installed in a car. The results prove that the algorithm works with sufficient accuracy. The convergence is fast and stability is maintained in all operating points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computationally Efficient Algorithm for Narrowband Active Sound Profiling

In active sound profiling (ASP), the target is to obtain a certain sound field or profile using similar techniques as in active noise control (ANC). Active sound profiling can be applied to a passenger car, for example, to modify the engine sound in the cabin. A fundamental algorithm in active sound profiling is the command-FXLMS (C-FXLMS) algorithm, which is an extension of the famous FXLMS al...

متن کامل

Modeling and simulation of the acoustic behavior of a muffler in a passenger car exhaust system

Muffler is one of the main components of an automotive exhaust system, which reduces the noise of the exhaust system. In this paper, modeling and simulation of the acoustic behavior of a muffler is presented with the aid of  an engineering software. For this purpose, firstly, an analytical model is presented to evaluate the sound transmission loss in cylindrical shells based on Sander's theory....

متن کامل

COMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES

Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...

متن کامل

Multi-objective design optimization for crash safety of a vehicle with a viscoelastic body and wide tapered multi-cell energy absorber using DOE method

Due to the extensive use of cars and progresses in the vehicular industries, it has become necessary to design vehicles with higher levels of safety standards. Development of the computer aided design and analysis techniques has enabled employing well-developed commercial finite-element-based crash simulation computer codes, in recent years. The present study is an attempt to optimize behavi...

متن کامل

Solving a New Multi-Period Mathematical Model of the Rail-Car Fleet Size and Car Utilization by Simulated Annealing

There is a significant interaction between sizing a fleet of rail cars and its utilization. This paper presents a new multi-period mathematical model and a solution procedure to optimize the rail-car fleet size and freight car allocation, wherein car demands, and travel times, are assumed to be deterministic, and unmet demands are backordered. This problem is considered NP-complete. In other wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012